Volume of random real algebraic submanifolds

Thomas Letendre (ENS de Lyon)

Lausanne - 27 octobre 2016

Random geometry

(M, g) compact Riemannian manifold of dimension n (without boundary). We choose a codimension r submanifold of M "randomly".

Question

What can we say of the topology or the geometry of the submanifold? (volume, Euler characteristic, number of connected components, ...)

We look for a statistical answer (mean, variance, distribution, ...) or an almost sure behavior.

Roots of real polynomials

A complex polynomial of degree d has d roots in \mathbb{C}, generically distinct.

Question

How many roots does a real polynomial $P \in \mathbb{R}_{d}[X]$ have?

Roots of real polynomials

A complex polynomial of degree d has d roots in \mathbb{C}, generically distinct.

Question

How many roots does a real polynomial $P \in \mathbb{R}_{d}[X]$ have?

Theorem (Kac, 1943)
Let $P=\sum_{i=0}^{d} a_{i} X^{i}$, where a_{0}, \ldots, a_{d} are i.i.d. standard Gaussian variables and let $Z_{d}=P^{-1}(0)$, then

$$
\mathbb{E}\left[\operatorname{card}\left(Z_{d}\right)\right] \sim \frac{2}{\pi} \log (d)
$$

Higher dimensions

Notations

Let $\alpha=\left(\alpha_{0}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n+1}$, we set:

- $|\alpha|=\alpha_{0}+\cdots+\alpha_{n}$,
- $\alpha!=\alpha_{0}!\cdots \alpha_{n}$!,
- $X^{\alpha}=X_{0}^{\alpha_{0}} \ldots X_{n}^{\alpha_{n}}$,
- if $|\alpha|=d,\binom{d}{\alpha}=\frac{d!}{\alpha!}$.
P homogeneous polynomial in $\mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]: P=\sum_{|\alpha|=d} a_{\alpha} X^{\alpha}$.
$P^{-1}(0) \subset \mathbb{R}^{n+1}$ is a cone.
We consider $Z_{P}=P^{-1}(0) \cap \mathbb{S}^{n}$.

What is a manifold?

Definition

A dimension n manifold is a space M which is locally diffeomorphic to \mathbb{R}^{n}.

What is a manifold?

Definition

A dimension n manifold is a space M which is locally diffeomorphic to \mathbb{R}^{n}.
It generalizes the idea of a non-singular curve or surface (no double points, no cusps, etc.).

Source: en.wikipedia.org

Main point

We can extend the calculus to maps between manifolds.

What is a submanifold?

Let M be a manifold of dimension n and $r \in\{1, \ldots, n\}$.

Definition

A codimension r submanifold of M is $Z_{f} \subset M$ such that $Z_{f}=f^{-1}(0)$, where:

- $f: M \rightarrow \mathbb{R}^{r}$ is smooth,
- for all x such that $f(x)=0, d_{x} f$ is surjective.

What is a submanifold?

Let M be a manifold of dimension n and $r \in\{1, \ldots, n\}$.

Definition

A codimension r submanifold of M is $Z_{f} \subset M$ such that $Z_{f}=f^{-1}(0)$, where:

- $f: M \rightarrow \mathbb{R}^{r}$ is smooth,
- for all x such that $f(x)=0, d_{x} f$ is surjective.

Main point

Z_{f} is a manifold of dimension $n-r$.

A random curve on the sphere

Picture by Alex Barnett (Dartmouth).

Riemannian manifold

Definition

A Riemannian manifold is a manifold M equipped with a Riemannian metric g (a scalar product on each tangent space).

Riemannian manifold

Definition

A Riemannian manifold is a manifold M equipped with a Riemannian metric g (a scalar product on each tangent space).

On a Riemannian manifold (M, g), there are:

- a natural distance D,
- a natural volume measure $\left|\mathrm{d} V_{M}\right|$.

Riemannian manifold

Definition

A Riemannian manifold is a manifold M equipped with a Riemannian metric g (a scalar product on each tangent space).

On a Riemannian manifold (M, g), there are:

- a natural distance D,
- a natural volume measure $\left|\mathrm{d} V_{M}\right|$.

If Z_{f} is a codimension r submanifold of M, the restriction of g is a Riemannian metric on Z_{f}.
We denote by $\left|\mathrm{d} V_{f}\right|$ the associated ($(n-r)$-dimensional) volume measure.

Gaussian variables

$(V,\langle\cdot, \cdot\rangle)$ Euclidean space of dimension N, Λ self-adjoint and positive definite.

Definition

A random vector X in V is a centered Gaussian of variance Λ if its distribution admits the density:

$$
\frac{1}{(2 \pi)^{\frac{N}{2}} \sqrt{\operatorname{det}(\Lambda)}} \exp \left(-\frac{1}{2}\left\langle\Lambda^{-1} x, x\right\rangle\right)
$$

with respect to the Lebesgue measure. This is denoted by $X \sim \mathcal{N}(\Lambda)$.

We say that $X \sim \mathcal{N}(\mathrm{Id})$ is a standard Gaussian. In any orthonormal basis $\left(e_{1}, \ldots, e_{N}\right)$ we have $X=\sum a_{i} e_{i}$, where $a_{i} \sim \mathcal{N}(1)$ are i.i.d. real random variables.

Some properties of Gaussian variables

- Two jointly Gaussian vectors are independent iff they are uncorrelated.
- If $X \sim \mathcal{N}(\Lambda)$ in V and $L: V \rightarrow V^{\prime}$ is linear, then $L(X) \sim \mathcal{N}\left(L \wedge L^{*}\right)$.
- If (X, Y) is a centered Gaussian vector with variance $\left(\begin{array}{cc}A & B^{\mathrm{t}} \\ B\end{array}\right)$, then the distribution of Y given that $X=0$ is also a centered Gaussian vector, and its variance is:

$$
C-B A^{-1} B^{\mathrm{t}}
$$

Kostlan-Shub-Smale polynomials

We consider a random Kostlan-distributed $P \in \mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$. That is:

$$
P=\sqrt{\frac{(d+n)!}{\pi^{n} d!}} \sum_{|\alpha|=d} a_{\alpha} \sqrt{\binom{d}{\alpha}} X^{\alpha},
$$

where $\left(a_{\alpha}\right)_{|\alpha|=d}$ are i.i.d. $\mathcal{N}(1)$ real variables.

Kostlan-Shub-Smale polynomials

We consider a random Kostlan-distributed $P \in \mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$. That is:

$$
P=\sqrt{\frac{(d+n)!}{\pi^{n} d!}} \sum_{|\alpha|=d} a_{\alpha} \sqrt{\binom{d}{\alpha}} X^{\alpha},
$$

where $\left(a_{\alpha}\right)_{|\alpha|=d}$ are i.i.d. $\mathcal{N}(1)$ real variables.

Remark

$P \sim \mathcal{N}(\mathrm{Id})$ in $\mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$ for the following L^{2} scalar product:

$$
\langle P, Q\rangle=\frac{1}{2 \pi} \int_{\left\{z \in \mathbb{C}^{n+1} \mid\|z\|=1\right\}} P(z) \overline{Q(z)} \mathrm{d} \theta(z)
$$

Kostlan's distribution is invariant under the action of $O_{n+1}(\mathbb{R})$ by:

$$
(O \cdot P)(x)=P\left(O^{-1} x\right)
$$

Kostlan-Shub-Smale polynomials

Let $d, n \in \mathbb{N}^{*}$ and $r \in\{1, \ldots, n\}$,
P_{1}, \ldots, P_{r} i.i.d. Kostlan-distributed polynomials in $\mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$. We set $Z_{d}=Z_{P_{1}} \cap \cdots \cap Z_{P_{r}} \subset \mathbb{S}^{n}$.

Lemma

Z_{d} is almost surely a codimension r submanifold of \mathbb{S}^{n}.

Theorem (Kostlan, 1993)
For all n, r and d, we have: $\mathbb{E}\left[\operatorname{Vol}\left(Z_{d}\right)\right]=d^{\frac{r}{2}} \operatorname{Vol}\left(\mathbb{S}^{n-r}\right)$.

Kostlan-Shub-Smale polynomials

Figure: Degree 56 random curves in \mathbb{S}^{2}, Kostlan's model.
Pictures by Maria Nastasescu (Caltech).

Real algebraic framework

M real algebraic manifold of dimension n (for example $M=Z_{P} \subset \mathbb{S}^{n+1}$), with a natural Riemannian metric.
$\left(P_{1}, \ldots, P_{r}\right)$ replaced by a standard Gaussian section s of $\mathcal{E} \otimes \mathcal{L}^{d}$, a rank r real holomorphic Hermitian vector bundle, with \mathcal{L} ample line bundle. In this setting, $Z_{d}=s_{d}^{-1}(0)$.

Real algebraic framework

M real algebraic manifold of dimension n (for example $M=Z_{P} \subset \mathbb{S}^{n+1}$), with a natural Riemannian metric.
$\left(P_{1}, \ldots, P_{r}\right)$ replaced by a standard Gaussian section s of $\mathcal{E} \otimes \mathcal{L}^{d}$, a rank r real holomorphic Hermitian vector bundle, with \mathcal{L} ample line bundle. In this setting, $Z_{d}=s_{d}^{-1}(0)$.

Lemma

If d is large enough, then Z_{d} is a.s. a codimension r submanifold of M.

Expected volume

$\left|\mathrm{d} V_{M}\right|$ Riemannian measure on $M,\left|\mathrm{~d} V_{d}\right|$ Riemannian measure on Z_{d}. We see Z_{d} as a measure on M : $\forall \phi \in \mathcal{C}^{0}(M),\left\langle Z_{d}, \phi\right\rangle=\int_{Z_{d}} \phi\left|\mathrm{~d} V_{d}\right|$.

Theorem (L., 2014)
For all $\phi \in \mathcal{C}^{0}(M)$,

$$
\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]=d^{\frac{r}{2}}\left(\int_{M} \phi\left|\mathrm{~d} V_{M}\right|\right) \frac{\operatorname{Vol}\left(\mathbb{S}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{S}^{n}\right)}+\|\phi\|_{C^{0}} O\left(d^{\frac{r}{2}-1}\right),
$$

where the error term is independent of ϕ.

Expected volume

$\left|\mathrm{d} V_{M}\right|$ Riemannian measure on $M,\left|\mathrm{~d} V_{d}\right|$ Riemannian measure on Z_{d}. We see Z_{d} as a measure on M : $\forall \phi \in \mathcal{C}^{0}(M),\left\langle Z_{d}, \phi\right\rangle=\int_{Z_{d}} \phi\left|\mathrm{~d} V_{d}\right|$.

Theorem (L., 2014)
For all $\phi \in \mathcal{C}^{0}(M)$,

$$
\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]=d^{\frac{r}{2}}\left(\int_{M} \phi\left|\mathrm{~d} V_{M}\right|\right) \frac{\operatorname{Vol}\left(\mathbb{S}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{S}^{n}\right)}+\|\phi\|_{\mathcal{C}^{0}} O\left(d^{\frac{r}{2}-1}\right)
$$

where the error term is independent of ϕ.

Corollary

As Radon measures, we have: $d^{-\frac{r}{2}} \mathbb{E}\left[Z_{d}\right] \xrightarrow[d \rightarrow+\infty]{ } \frac{\operatorname{Vol}\left(\mathbb{S}^{n-r}\right)}{\operatorname{Vol}\left(\mathbb{S}^{n}\right)}\left|\mathrm{d} V_{M}\right|$.

Variance of the volume

Theorem (L., 2016)
If $1 \leqslant r<n$, then for all $\phi \in \mathcal{C}^{0}(M)$,

$$
\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)=d^{r-\frac{n}{2}}\left(\int_{M} \phi^{2}\left|\mathrm{~d} V_{M}\right|\right) \mathcal{I}_{n, r}+o\left(d^{r-\frac{n}{2}}\right),
$$

where $\mathcal{I}_{n, r}$ is explicit and $0 \leqslant \mathcal{I}_{n, r}<+\infty$.

Variance of the volume

Theorem (L., 2016)
If $1 \leqslant r<n$, then for all $\phi \in \mathcal{C}^{0}(M)$,

$$
\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)=d^{r-\frac{n}{2}}\left(\int_{M} \phi^{2}\left|\mathrm{~d} V_{M}\right|\right) \mathcal{I}_{n, r}+o\left(d^{r-\frac{n}{2}}\right)
$$

where $\mathcal{I}_{n, r}$ is explicit and $0 \leqslant \mathcal{I}_{n, r}<+\infty$.

Corollary

$$
\operatorname{Var}\left(\operatorname{Vol}\left(Z_{d}\right)\right)=d^{r-\frac{n}{2}} \operatorname{Vol}(M) \mathcal{I}_{n, r}+o\left(d^{r-\frac{n}{2}}\right)
$$

The case of random points

For one Kostlan-Shub-Smale polynomial in $\mathbb{S}^{1}(n=r=1)$.
Theorem (Kostlan, 1993)

$$
\mathbb{E}\left[\operatorname{card}\left(Z_{d}\right)\right]=2 \sqrt{d}
$$

Theorem (Dalmao, 2015)
There exists $\sigma^{2}>0$ explicit such that:

$$
\operatorname{Var}\left(\operatorname{card}\left(Z_{d}\right)\right) \sim \sigma^{2} \sqrt{d}
$$

Moreover,

$$
\frac{\operatorname{card}\left(Z_{d}\right)-2 \sqrt{d}}{\sigma d^{\frac{1}{4}}} \xrightarrow[d \rightarrow+\infty]{\mathcal{D}} \mathcal{N}(1)
$$

Concentration around the mean

Corollary

If $1 \leqslant r<n$, then for all $\phi \in \mathcal{C}^{0}(M)$,

$$
\mathbb{P}\left(\left|\frac{\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]}{d^{\frac{1}{2}}}\right| \geqslant \frac{1}{d^{\frac{r}{4}}}\right)=O\left(d^{\frac{r-n}{2}}\right) .
$$

By Markov's inequality,

$$
\begin{aligned}
\mathbb{P}\left(\left|\frac{\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]}{d^{\frac{r}{2}}}\right| \geqslant \frac{1}{d^{\frac{r}{4}}}\right) & =\mathbb{P}\left(\left|\left\langle Z_{d}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]\right| \geqslant d^{\frac{r}{4}}\right) \\
& \leqslant d^{-\frac{r}{2}} \operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right) \\
& =O\left(d^{\frac{r-n}{2}}\right) .
\end{aligned}
$$

Equidistribution in probability

Corollary

If $1 \leqslant r<n$, for every open set $U \subset M$, we have:

$$
\mathbb{P}\left(Z_{d} \cap U=\emptyset\right)=O\left(d^{-\frac{n}{2}}\right) .
$$

Equidistribution in probability

Corollary

If $1 \leqslant r<n$, for every open set $U \subset M$, we have:

$$
\mathbb{P}\left(Z_{d} \cap U=\emptyset\right)=O\left(d^{-\frac{n}{2}}\right) .
$$

Let $\phi_{U} \in \mathcal{C}^{0}(M)$ that vanishes outside U and is positive on U.

Let $\varepsilon>0$ be such that, for every d large enough,

$$
\mathbb{E}\left[\left\langle Z_{d}, \phi U\right\rangle\right]-d^{\frac{r}{2}} \varepsilon>0
$$

Equidistribution in probability

$$
\begin{aligned}
\mathbb{P}\left(Z_{d} \cap U=\emptyset\right) & =\mathbb{P}\left(\left\langle Z_{d}, \phi_{U}\right\rangle=0\right) \\
& \leqslant \mathbb{P}\left(\left\langle Z_{d}, \phi_{U}\right\rangle<\mathbb{E}\left[\left\langle Z_{d}, \phi_{U}\right\rangle\right]-d^{\frac{r}{2}} \varepsilon\right) \\
& \leqslant \mathbb{P}\left(\left|\left\langle Z_{d}, \phi_{U}\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi_{U}\right\rangle\right]\right|>d^{\frac{r}{2}} \varepsilon\right) \\
& \leqslant \frac{1}{d^{r} \varepsilon^{2}} \operatorname{Var}\left(\left\langle Z_{d}, \phi_{U}\right\rangle\right) \\
& =O\left(d^{-\frac{n}{2}}\right) .
\end{aligned}
$$

Universality of the zero set

Theorem (Gayet-Welschinger, 2013)
Let $\Sigma \subset \mathbb{R}^{n}$ be a codimension r compact submanifold without boundary and $R>0$.
Then, there exists $C_{\Sigma, R} \geqslant 0$ such that, for all d large enough, for all $x \in M$,

$$
\mathbb{P}\left(Z_{d} \cap B\left(x, \frac{R}{\sqrt{d}}\right) \supset \Sigma^{\prime} \text { s.t. }\left(B\left(x, \frac{R}{\sqrt{d}}\right), \Sigma^{\prime}\right) \simeq\left(\mathbb{R}^{n}, \Sigma\right)\right) \geqslant C_{\Sigma, R} .
$$

Moreover, $C_{\Sigma, R}>0$ for R large enough.

The correlation function

A Kostlan polynomial $P \in \mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$ defines a centered Gaussian process $(P(x))_{x \in \mathbb{S}^{n}}$.

This process is characterized by its correlation function:

$$
e_{d}:(x, y) \mapsto \mathbb{E}[P(x) P(y)] .
$$

The correlation function

A Kostlan polynomial $P \in \mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$ defines a centered Gaussian process $(P(x))_{x \in \mathbb{S}^{n}}$.

This process is characterized by its correlation function:

$$
\begin{aligned}
& e_{d}:(x, y) \mapsto \mathbb{E}[P(x) P(y)] \\
& \mathbb{E}[P(x) P(y)]= \frac{(d+n)!}{\pi^{n} d!} \sum_{|\alpha|=d}\binom{d}{\alpha} x^{\alpha} y^{\alpha}=\frac{(d+n)!}{\pi^{n} d!}(\langle x, y\rangle)^{d} \\
&= \frac{(d+n)!}{\pi^{n} d!} \cos (D(x, y))^{d} .
\end{aligned}
$$

The correlation function

A Kostlan polynomial $P \in \mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$ defines a centered Gaussian process $(P(x))_{x \in \mathbb{S}^{n}}$.

This process is characterized by its correlation function:

$$
e_{d}:(x, y) \mapsto \mathbb{E}[P(x) P(y)] .
$$

$$
\begin{aligned}
\mathbb{E}[P(x) P(y)] & =\frac{(d+n)!}{\pi^{n} d!} \sum_{|\alpha|=d}\binom{d}{\alpha} x^{\alpha} y^{\alpha}=\frac{(d+n)!}{\pi^{n} d!}(\langle x, y\rangle)^{d} \\
& =\frac{(d+n)!}{\pi^{n} d!} \cos (D(x, y))^{d} .
\end{aligned}
$$

Remark

By taking partial differentials, $\frac{\partial e_{d}}{\partial x_{i}}(x, y)=\mathbb{E}\left[\frac{\partial P}{\partial x_{i}}(x) P(y)\right]$.

Scaling limit of the Bergman kernel

In the general real algebraic framework, the correlation function e_{d} is the Bergman kernel of $\mathcal{E} \otimes \mathcal{L}^{d}$.
There is a universal scaling limit for e_{d} (Ma-Marinescu, 2007) :

$$
e_{d}(x, y) \simeq \frac{d^{n}}{\pi^{n}} \exp \left(-\frac{d}{2}\|x-y\|^{2}\right)
$$

whenever $D(x, y) \leqslant K \frac{\log d}{\sqrt{d}}$.

Theorem (Ma-Marinescu, 2015)

There exists $C>0$ such that, for all $k \in \mathbb{N}$,

$$
\left\|e_{d}(x, y)\right\|_{\mathcal{C}^{k}}=O\left(d^{n+\frac{k}{2}} \exp (-C \sqrt{d} D(x, y))\right)
$$

uniformly in (x, y).

A heuristic for the mean volume

The Bergman kernel shows a characteristic scale $\frac{1}{\sqrt{d}}$.
We cut M into boxes of size $\frac{1}{\sqrt{d}}$:

$$
\simeq \operatorname{Vol}(M) d^{\frac{n}{2}} \text { boxes. }
$$

The boxes are independent, same distribution of Z_{d} in each box.

A heuristic for the mean volume

The Bergman kernel shows a characteristic scale $\frac{1}{\sqrt{d}}$.
We cut M into boxes of size $\frac{1}{\sqrt{d}}$:

$$
\simeq \operatorname{Vol}(M) d^{\frac{n}{2}} \text { boxes. }
$$

The boxes are independent, same distribution of Z_{d} in each box.
Components of size $\frac{1}{\sqrt{d}}$, each one has a volume of order $\left(\frac{1}{\sqrt{d}}\right)^{n-r}$. Finally, $\operatorname{Vol}\left(Z_{d}\right)$ is of order $\operatorname{Vol}(M) d^{\frac{r}{2}}$.

Kac-Rice formula

In the case of hypersurfaces $(r=1)$.
$P \in \mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]$ Kostlan-distributed, $Z_{d}=P^{-1}(0) \cap \mathbb{S}^{n}$.

Kac-Rice formula

For every ϕ,

$$
\mathbb{E}\left[\int_{Z_{d}} \phi\left|\mathrm{~d} V_{d}\right|\right]=\frac{1}{\sqrt{2 \pi}} \int_{x \in \mathbb{S}^{n}} \phi(x) \frac{\mathbb{E}\left[\left\|d_{x} P\right\| \mid P(x)=0\right]}{\sqrt{e_{d}(x, x)}} .
$$

$x \mapsto e_{d}(x, x)$ does not vanish (i.e. for all $x \in M, P(x)$ is non-degenerate). Similar formula in the general case.

Asymptotic of the expectation

$$
\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]=\frac{1}{\sqrt{2 \pi}} \int_{x \in \mathbb{S}^{n}} \phi(x) \frac{\mathbb{E}\left[\left\|d_{x} P\right\| \mid P(x)=0\right]}{\sqrt{e_{d}(x, x)}} .
$$

We have $e_{d}(x, x) \sim \frac{d^{n}}{\pi^{n}}$. We need to estimate $\mathbb{E}\left[\left\|d_{x} P\right\| \mid P(x)=0\right]$.

Asymptotic of the expectation

$$
\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]=\frac{1}{\sqrt{2 \pi}} \int_{x \in \mathbb{S}^{n}} \phi(x) \frac{\mathbb{E}\left[\left\|d_{x} P\right\| \mid P(x)=0\right]}{\sqrt{e_{d}(x, x)}}
$$

We have $e_{d}(x, x) \sim \frac{d^{n}}{\pi^{n}}$. We need to estimate $\mathbb{E}\left[\left\|d_{x} P\right\| \mid P(x)=0\right]$. $\left(P(x), d_{x} P\right)$ is a centered Gaussian of variance:

$$
\Lambda=\left(\begin{array}{cccc}
e_{d}(x, x) & \partial_{y_{1}} e_{d}(x, x) & \cdots & \partial_{y_{n}} e_{d}(x, x) \\
\partial_{x_{1}} e_{d}(x, x) & \partial_{x_{1}} \partial_{y_{1}} e_{d}(x, x) & \cdots & \partial_{x_{1}} \partial_{y_{n}} e_{d}(x, x) \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{x_{n}} e_{d}(x, x) & \partial_{x_{n}} \partial_{y_{1}} e_{d}(x, x) & \cdots & \partial_{x_{n}} \partial_{y_{n}} e_{d}(x, x)
\end{array}\right) .
$$

The conditional distribution of $d_{x} P$ is a centered Gaussian. We can compute its variance from Λ.

Asymptotic of the expectation

$$
\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]=\frac{1}{\sqrt{2 \pi}} \int_{x \in \mathbb{S}^{n}} \phi(x) \frac{\mathbb{E}\left[\left\|d_{x} P\right\| \mid P(x)=0\right]}{\sqrt{e_{d}(x, x)}}
$$

We have $e_{d}(x, x) \sim \frac{d^{n}}{\pi^{n}}$. We need to estimate $\mathbb{E}\left[\left\|d_{x} P\right\| \mid P(x)=0\right]$. $\left(P(x), d_{x} P\right)$ is a centered Gaussian of variance:

$$
\Lambda=\left(\begin{array}{cccc}
e_{d}(x, x) & \partial_{y_{1}} e_{d}(x, x) & \cdots & \partial_{y_{n}} e_{d}(x, x) \\
\partial_{x_{1}} e_{d}(x, x) & \partial_{x_{1}} \partial_{y_{1}} e_{d}(x, x) & \cdots & \partial_{x_{1}} \partial_{y_{n}} e_{d}(x, x) \\
\vdots & \vdots & \ddots & \vdots \\
\partial_{x_{n}} e_{d}(x, x) & \partial_{x_{n}} \partial_{y_{1}} e_{d}(x, x) & \cdots & \partial_{x_{n}} \partial_{y_{n}} e_{d}(x, x)
\end{array}\right) .
$$

The conditional distribution of $d_{x} P$ is a centered Gaussian. We can compute its variance from Λ.
We conclude by using the estimates of Ma and Marinescu for e_{d}.

Asymptotic of the variance

$$
\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)=\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle^{2}\right]-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]^{2}
$$

By the Kac-Rice formula, $\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]^{2}$ equals:

$$
\frac{1}{2 \pi} \int_{x, y \in \mathbb{S}^{n}} \phi(x) \phi(y) \frac{\mathbb{E}\left[\left\|d_{x} P\right\| \mid P(x)=0\right]}{\sqrt{e_{d}(x, x)}} \frac{\mathbb{E}\left[\left\|d_{y} P\right\| \mid P(y)=0\right]}{\sqrt{e_{d}(y, y)}} .
$$

Asymptotic of the variance

$$
\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)=\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle^{2}\right]-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]^{2}
$$

By the Kac-Rice formula, $\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]^{2}$ equals:

$$
\frac{1}{2 \pi} \int_{x, y \in \mathbb{S}^{n}} \phi(x) \phi(y) \frac{\mathbb{E}\left[\left\|d_{x} P\right\| \mid P(x)=0\right]}{\sqrt{e_{d}(x, x)}} \frac{\mathbb{E}\left[\left\|d_{y} P\right\| \mid P(y)=0\right]}{\sqrt{e_{d}(y, y)}} .
$$

Besides,

$$
\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle^{2}\right]=\mathbb{E}\left[\int_{x, y \in Z_{d}} \phi(x) \phi(y)\left|\mathrm{d} V_{d}\right|^{2}\right] .
$$

Kac-Rice formula 2

For d large enough, we have $\operatorname{det}\binom{e_{d}(x, x) e_{d}(x, y)}{e_{d}(y, x) e_{d}(y, y)} \neq 0$, whenever $x \neq y$ (i.e. $(P(x), P(y))$ is non-degenerate).

Kac-Rice formula

$$
\begin{aligned}
& \mathbb{E}\left[\int_{x, y \in Z_{d}} \phi(x) \phi(y)\left|\mathrm{d} V_{d}\right|^{2}\right]= \\
& \\
& \quad \frac{1}{2 \pi} \int_{x, y \in \mathbb{S}^{n}} \phi(x) \phi(y) \frac{\mathbb{E}\left[\left\|d_{x} P\right\|\left\|d_{y} P\right\| \mid P(x)=0=P(y)\right]}{\sqrt{e_{d}(x, x) e_{d}(y, y)-e_{d}(x, y)^{2}}} .
\end{aligned}
$$

Asymptotic of the variance

Finally

$$
\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)=\frac{1}{2 \pi} \int_{x, y \in \mathbb{S}^{n}} \phi(x) \phi(y) \mathcal{D}_{d}(x, y)
$$

where

$$
\begin{aligned}
\mathcal{D}_{d}(x, y)= & \frac{\mathbb{E}\left[\left\|d_{x} P\right\|\left\|d_{y} P\right\| \mid P(x)=0=P(y)\right]}{\sqrt{e_{d}(x, x) e_{d}(y, y)-e_{d}(x, y)^{2}}} \\
& -\frac{\mathbb{E}\left[\left\|d_{x} P\right\| \mid P(x)=0\right]}{\sqrt{e_{d}(x, x)}} \frac{\mathbb{E}\left[\left\|d_{y} P\right\| \mid P(y)=0\right]}{\sqrt{e_{d}(y, y)}} .
\end{aligned}
$$

Asymptotic of the variance

When $D(x, y) \geqslant K \frac{\log d}{\sqrt{d}}$, we prove that $\mathcal{D}_{d}(x, y)$ is $O\left(d^{r-\frac{n}{2}-1}\right)$. Moreover, $\frac{1}{d^{r}} \mathcal{D}_{d}\left(x, x+\frac{z}{\sqrt{d}}\right) \xrightarrow[d \rightarrow+\infty]{\longrightarrow} \mathcal{D}(z)$.

$$
\begin{aligned}
\int_{x, y \in \mathbb{S}^{n}} & \phi(x) \phi(y) \mathcal{D}_{d}(x, y) \simeq \int_{x \in \mathbb{S}^{n}} \int_{y \in B\left(x, \frac{\log d}{\sqrt{d}}\right)} \phi(x) \phi(y) \mathcal{D}_{d}(x, y) \\
& \simeq d^{-\frac{n}{2}} \int_{x \in \mathbb{S}^{n}} \int_{z \in B(0, \log d)} \phi(x) \phi\left(x+\frac{z}{\sqrt{d}}\right) \mathcal{D}_{d}\left(x, x+\frac{z}{\sqrt{d}}\right) \\
& \simeq d^{r-\frac{n}{2}}\left(\int_{x \in \mathbb{S}^{n}} \phi(x)^{2}\right)\left(\int_{\mathbb{R}^{n}} \mathcal{D}(z)\right) .
\end{aligned}
$$

Almost sure equidistribution

We consider a random sequence of polynomials of increasing degree

$$
\left(P_{d}\right)_{d \in \mathbb{N}^{*}} \in \prod_{d \in \mathbb{N}^{*}} \mathbb{R}_{d}^{\text {hom }}\left[X_{0}, \ldots, X_{n}\right]
$$

distributed as $\mathrm{d} \nu$, product measure of the Kostlan distributions.

Corollary

If $n \geqslant 3$, then $\mathrm{d} \nu$-almost surely we have:

$$
\forall \phi \in \mathcal{C}^{0}\left(\mathbb{S}^{n}\right), \quad \frac{1}{\sqrt{d}}\left\langle Z_{P_{d}}, \phi\right\rangle \xrightarrow[d \rightarrow+\infty]{ } \frac{\operatorname{Vol}\left(\mathbb{S}^{n-1}\right)}{\operatorname{Vol}\left(\mathbb{S}^{n}\right)} \int_{\mathbb{S}^{n}} \phi
$$

Almost sure equidistribution

Let $\phi \in \mathcal{C}^{0}\left(\mathbb{S}^{n}\right)$, we have:
$\mathbb{E}\left[\sum_{d \geqslant 1}\left(\frac{1}{\sqrt{d}}\left(\left\langle Z_{P_{d}}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]\right)\right)^{2}\right]=\sum_{d \geqslant 1} \frac{1}{d} \operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)<+\infty$,
since $\operatorname{Var}\left(\left\langle Z_{d}, \phi\right\rangle\right)=O\left(d^{1-\frac{3}{2}}\right)$. Then $\mathrm{d} \nu$-a.s.

$$
\sum_{d \geqslant 1}\left(\frac{1}{\sqrt{d}}\left(\left\langle Z_{P_{d}}, \phi\right\rangle-\mathbb{E}\left[\left\langle Z_{d}, \phi\right\rangle\right]\right)\right)^{2}<+\infty
$$

and

$$
\frac{1}{\sqrt{d}}\left\langle Z_{P_{d}}, \phi\right\rangle \xrightarrow[d \rightarrow+\infty]{\mathrm{d} \nu-\text { p.s. }} \frac{\operatorname{Vol}\left(\mathbb{S}^{n-1}\right)}{\operatorname{Vol}\left(\mathbb{S}^{n}\right)} \int_{\mathbb{S}^{n}} \phi
$$

We conclude by using the separability of $\mathcal{C}^{0}\left(\mathbb{S}^{n}\right)$.

The end

Thank you for your attention.

