Volume of random real algebraic submanifolds

Thomas Letendre (ENS de Lyon)

Lausanne – 27 octobre 2016

Thomas Letendre

Volume of random submanifolds

Lausanne – 27/10/16

1 / 33

э

Random geometry

(M,g) compact Riemannian manifold of dimension n (without boundary). We choose a codimension r submanifold of M "randomly".

Question

What can we say of the topology or the geometry of the submanifold? (volume, Euler characteristic, number of connected components, ...)

We look for a statistical answer (mean, variance, distribution, ...) or an almost sure behavior.

Roots of real polynomials

A complex polynomial of degree d has d roots in \mathbb{C} , generically distinct.

Question

How many roots does a real polynomial $P \in \mathbb{R}_d[X]$ have?

Roots of real polynomials

A complex polynomial of degree d has d roots in \mathbb{C} , generically distinct.

Question

How many roots does a real polynomial $P \in \mathbb{R}_d[X]$ have?

Theorem (Kac, 1943)

Let
$$P = \sum_{i=0}^{d} a_i X^i$$
, where a_0, \dots, a_d are *i.i.d.* standard Gaussian variables
and let $Z_d = P^{-1}(0)$, then
 $\mathbb{E}[\operatorname{card}(Z_d)] \sim \frac{2}{\pi} \log(d).$

Higher dimensions

Notations

Let $\alpha = (\alpha_0, \ldots, \alpha_n) \in \mathbb{N}^{n+1}$, we set:

•
$$|\alpha| = \alpha_0 + \cdots + \alpha_n$$
,

•
$$X^{\alpha} = X_0^{\alpha_0} \cdots X_n^{\alpha_n}$$
,

•
$$\alpha! = \alpha_0! \cdots \alpha_n!$$
,
• if $|\alpha| = d$, $\begin{pmatrix} d \\ \alpha \end{pmatrix} = \frac{d!}{\alpha!}$.

homogeneous polynomial in Ρ $\mathbb{R}_d^{\text{hom}}[X_0,\ldots,X_n]: P = \sum a_\alpha X^\alpha.$ $|\alpha| = d$

$$\mathcal{P}^{-1}(0)\subset \mathbb{R}^{n+1}$$
 is a cone.
We consider $Z_{\mathcal{P}}=\mathcal{P}^{-1}(0)\cap \mathbb{S}^n.$

э

What is a manifold?

Definition

A dimension *n* manifold is a space *M* which is locally diffeomorphic to \mathbb{R}^n .

3

(日) (周) (日) (日)

What is a manifold?

Definition

A dimension *n* manifold is a space *M* which is locally diffeomorphic to \mathbb{R}^n .

It generalizes the idea of a non-singular curve or surface (no double points, no cusps, etc.).

Source: en.wikipedia.org

Main point We can extend the calculus to maps between manifolds. Image: Contract of the calculus to maps between manifolds </tbr>

What is a submanifold?

Let M be a manifold of dimension n and $r \in \{1, \ldots, n\}$.

Definition

A codimension r submanifold of M is $Z_f \subset M$ such that $Z_f = f^{-1}(0)$, where:

- $f: M \to \mathbb{R}^r$ is smooth,
- for all x such that f(x) = 0, $d_x f$ is surjective.

What is a submanifold?

Let M be a manifold of dimension n and $r \in \{1, \ldots, n\}$.

Definition

A codimension r submanifold of M is $Z_f \subset M$ such that $Z_f = f^{-1}(0)$, where:

- $f: M \to \mathbb{R}^r$ is smooth,
- for all x such that f(x) = 0, $d_x f$ is surjective.

Main point

```
Z_f is a manifold of dimension n - r.
```

・ 同 ト ・ ヨ ト ・ ヨ ト

A random curve on the sphere

Picture by Alex Barnett (Dartmouth).

Thomas Letendre

Volume of random submanifolds

Lausanne – 27/10/16

(日) (同) (三) (三)

7 / 33

- 2

Riemannian manifold

Definition

A Riemannian manifold is a manifold M equipped with a Riemannian metric g (a scalar product on each tangent space).

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Riemannian manifold

Definition

A Riemannian manifold is a manifold M equipped with a Riemannian metric g (a scalar product on each tangent space).

On a Riemannian manifold (M, g), there are:

- a natural distance D,
- a natural volume measure $|dV_M|$.

Riemannian manifold

Definition

A Riemannian manifold is a manifold M equipped with a Riemannian metric g (a scalar product on each tangent space).

On a Riemannian manifold (M, g), there are:

- a natural distance D,
- a natural volume measure $|dV_M|$.

If Z_f is a codimension r submanifold of M, the restriction of g is a Riemannian metric on Z_f . We denote by $|dV_f|$ the associated ((n - r)-dimensional) volume measure.

8 / 33

・ 同 ト ・ ヨ ト ・ ヨ ト

Gaussian variables

 $(V, \langle \cdot, \cdot \rangle)$ Euclidean space of dimension N, Λ self-adjoint and positive definite.

Definition

A random vector X in V is a centered Gaussian of variance Λ if its distribution admits the density:

$$rac{1}{(2\pi)^{rac{N}{2}}\sqrt{\det(\Lambda)}}\exp\left(-rac{1}{2}\left<\Lambda^{-1}x\,,x
ight>
ight)$$

with respect to the Lebesgue measure. This is denoted by $X \sim \mathcal{N}(\Lambda)$.

We say that $X \sim \mathcal{N}(\mathsf{Id})$ is a standard Gaussian. In any orthonormal basis (e_1, \ldots, e_N) we have $X = \sum a_i e_i$, where $a_i \sim \mathcal{N}(1)$ are i.i.d. real random variables. Some properties of Gaussian variables

• Two jointly Gaussian vectors are independent iff they are uncorrelated.

• If $X \sim \mathcal{N}(\Lambda)$ in V and $L: V \to V'$ is linear, then $L(X) \sim \mathcal{N}(L\Lambda L^*)$.

• If (X, Y) is a centered Gaussian vector with variance $\begin{pmatrix} A & B^t \\ B & C \end{pmatrix}$, then the distribution of Y given that X = 0 is also a centered Gaussian vector, and its variance is:

$$C-BA^{-1}B^{t}.$$

Kostlan-Shub-Smale polynomials

We consider a random Kostlan-distributed $P \in \mathbb{R}^{hom}_d[X_0, \ldots, X_n]$. That is:

$$P = \sqrt{\frac{(d+n)!}{\pi^n d!}} \sum_{|\alpha|=d} a_{\alpha} \sqrt{\binom{d}{\alpha}} X^{\alpha},$$

where $(a_{\alpha})_{|\alpha|=d}$ are i.i.d. $\mathcal{N}(1)$ real variables.

Kostlan-Shub-Smale polynomials

We consider a random Kostlan-distributed $P \in \mathbb{R}_d^{\text{hom}}[X_0, \ldots, X_n]$. That is:

$$P = \sqrt{\frac{(d+n)!}{\pi^n d!}} \sum_{|\alpha|=d} a_{\alpha} \sqrt{\binom{d}{\alpha}} X^{\alpha},$$

where $(a_{\alpha})_{|\alpha|=d}$ are i.i.d. $\mathcal{N}(1)$ real variables.

Remark

 $P \sim \mathcal{N}(\mathsf{Id})$ in $\mathbb{R}^{\mathsf{hom}}_d[X_0, \dots, X_n]$ for the following L^2 scalar product:

$$\langle P, Q \rangle = rac{1}{2\pi} \int_{\{z \in \mathbb{C}^{n+1} \mid \|z\| = 1\}} P(z) \overline{Q(z)} \, \mathrm{d}\theta(z).$$

Kostlan's distribution is invariant under the action of $O_{n+1}(\mathbb{R})$ by:

$$(O \cdot P)(x) = P(O^{-1}x).$$

Kostlan-Shub-Smale polynomials

Let $d, n \in \mathbb{N}^*$ and $r \in \{1, \ldots, n\}$, P_1, \ldots, P_r i.i.d. Kostlan-distributed polynomials in $\mathbb{R}_d^{\text{hom}}[X_0, \ldots, X_n]$. We set $Z_d = Z_{P_1} \cap \cdots \cap Z_{P_r} \subset \mathbb{S}^n$.

Lemma

 Z_d is almost surely a codimension r submanifold of \mathbb{S}^n .

Theorem (Kostlan, 1993)

For all
$$n, r$$
 and d , we have: $\mathbb{E}[\operatorname{Vol}(Z_d)] = d^{\frac{r}{2}} \operatorname{Vol}(\mathbb{S}^{n-r}).$

Kostlan–Shub–Smale polynomials

Figure: Degree 56 random curves in \mathbb{S}^2 , Kostlan's model.

Pictures by Maria Nastasescu (Caltech).

Thomas Letendre

Volume of random submanifolds

Lausanne – 27/10/16

Real algebraic framework

M real algebraic manifold of dimension *n* (for example $M = Z_P \subset \mathbb{S}^{n+1}$), with a natural Riemannian metric.

 (P_1, \ldots, P_r) replaced by a standard Gaussian section s of $\mathcal{E} \otimes \mathcal{L}^d$, a rank r real holomorphic Hermitian vector bundle, with \mathcal{L} ample line bundle. In this setting, $Z_d = s_d^{-1}(0)$.

Real algebraic framework

M real algebraic manifold of dimension *n* (for example $M = Z_P \subset \mathbb{S}^{n+1}$), with a natural Riemannian metric.

 (P_1, \ldots, P_r) replaced by a standard Gaussian section s of $\mathcal{E} \otimes \mathcal{L}^d$, a rank r real holomorphic Hermitian vector bundle, with \mathcal{L} ample line bundle. In this setting, $Z_d = s_d^{-1}(0)$.

Lemma

If d is large enough, then Z_d is a.s. a codimension r submanifold of M.

Expected volume

 $|dV_M|$ Riemannian measure on M, $|dV_d|$ Riemannian measure on Z_d . We see Z_d as a measure on M: $\forall \phi \in C^0(M), \langle Z_d, \phi \rangle = \int_{Z_d} \phi |dV_d|$.

Theorem (L., 2014)

For all $\phi \in \mathcal{C}^0(M)$,

$$\mathbb{E}[\langle Z_d , \phi \rangle] = d^{\frac{r}{2}} \left(\int_M \phi \left| \mathsf{d} V_M \right| \right) \frac{\operatorname{Vol}\left(\mathbb{S}^{n-r} \right)}{\operatorname{Vol}\left(\mathbb{S}^n \right)} + \|\phi\|_{\mathcal{C}^0} O\left(d^{\frac{r}{2}-1} \right),$$

where the error term is independent of ϕ .

Expected volume

 $|dV_M|$ Riemannian measure on M, $|dV_d|$ Riemannian measure on Z_d . We see Z_d as a measure on M: $\forall \phi \in C^0(M), \langle Z_d, \phi \rangle = \int_{Z_d} \phi |dV_d|$.

Theorem (L., 2014)

For all $\phi \in \mathcal{C}^0(M)$,

$$\mathbb{E}[\langle Z_d , \phi \rangle] = d^{\frac{r}{2}} \left(\int_M \phi \left| \mathsf{d} V_M \right| \right) \frac{\mathsf{Vol}\left(\mathbb{S}^{n-r} \right)}{\mathsf{Vol}\left(\mathbb{S}^n \right)} + \|\phi\|_{\mathcal{C}^0} O\left(d^{\frac{r}{2}-1} \right),$$

where the error term is independent of ϕ .

Corollary

As Radon measures, we have:
$$d^{-\frac{r}{2}}\mathbb{E}[Z_d] \xrightarrow[d \to +\infty]{} \frac{\operatorname{Vol}(\mathbb{S}^{n-r})}{\operatorname{Vol}(\mathbb{S}^n)} |dV_M|.$$

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Variance of the volume

Theorem (L., 2016)

If $1 \leq r < n$, then for all $\phi \in C^0(M)$,

$$\mathsf{Var}(\langle Z_d, \phi \rangle) = d^{r-\frac{n}{2}} \left(\int_M \phi^2 |\mathsf{d} V_M| \right) \mathcal{I}_{n,r} + o\left(d^{r-\frac{n}{2}}\right),$$

where $\mathcal{I}_{n,r}$ is explicit and $0 \leq \mathcal{I}_{n,r} < +\infty$.

▶ ★ 글 ▶ ★ 글 ▶ ... 글

Variance of the volume

Theorem (L., 2016)

If $1 \leq r < n$, then for all $\phi \in C^0(M)$,

$$\mathsf{Var}(\langle Z_d, \phi \rangle) = d^{r-\frac{n}{2}} \left(\int_M \phi^2 |\mathsf{d} V_M| \right) \mathcal{I}_{n,r} + o\left(d^{r-\frac{n}{2}}\right),$$

where $\mathcal{I}_{n,r}$ is explicit and $0 \leq \mathcal{I}_{n,r} < +\infty$.

Corollary

$$\operatorname{Var}(\operatorname{Vol}\left(Z_{d}
ight))=d^{r-rac{n}{2}}\operatorname{Vol}\left(M
ight)\mathcal{I}_{n,r}+o\left(d^{r-rac{n}{2}}
ight).$$

▲ ② ▶ ▲ ≧ ▶ ▲ ≧ ▶ ≧ Lausanne – 27/10/16

The case of random points

For one Kostlan–Shub–Smale polynomial in \mathbb{S}^1 (n = r = 1).

Theorem (Kostlan, 1993)

$$\mathbb{E}[\operatorname{card}(Z_d)] = 2\sqrt{d}.$$

Theorem (Dalmao, 2015)

There exists $\sigma^2 > 0$ explicit such that:

 $\operatorname{Var}(\operatorname{card}(Z_d)) \sim \sigma^2 \sqrt{d}.$

Moreover,

$$\frac{\operatorname{card}(Z_d) - 2\sqrt{d}}{\sigma d^{\frac{1}{4}}} \xrightarrow[d \to +\infty]{\mathcal{D}} \mathcal{N}(1).$$

Concentration around the mean

Corollary

If $1 \leq r < n$, then for all $\phi \in C^0(M)$,

$$\mathbb{P}\left(\left|\frac{\langle Z_d\,,\phi\rangle-\mathbb{E}[\langle Z_d\,,\phi\rangle]}{d^{\frac{r}{2}}}\right|\geqslant\frac{1}{d^{\frac{r}{4}}}\right)=O\left(d^{\frac{r-n}{2}}\right).$$

By Markov's inequality,

$$\mathbb{P}\left(\left|\frac{\langle Z_d,\phi\rangle - \mathbb{E}[\langle Z_d,\phi\rangle]}{d^{\frac{r}{2}}}\right| \ge \frac{1}{d^{\frac{r}{4}}}\right) = \mathbb{P}\left(\left|\langle Z_d,\phi\rangle - \mathbb{E}[\langle Z_d,\phi\rangle]\right| \ge d^{\frac{r}{4}}\right)$$
$$\leqslant d^{-\frac{r}{2}}\operatorname{Var}(\langle Z_d,\phi\rangle)$$
$$= O\left(d^{\frac{r-n}{2}}\right).$$

• • = • • = •

э

Equidistribution in probability

Corollary If $1 \le r < n$, for every open set $U \subset M$, we have: $\mathbb{P}(Z_d \cap U = \emptyset) = O(d^{-\frac{n}{2}}).$

Lausanne – 27/10/16

글 에 에 글 어

19 / 33

э

Equidistribution in probability

Corollary If $1 \le r < n$, for every open set $U \subset M$, we have: $\mathbb{P}(Z_d \cap U = \emptyset) = O(d^{-\frac{n}{2}}).$

Let $\phi_U \in \mathcal{C}^0(M)$ that vanishes outside U and is positive on U.

Let $\varepsilon > 0$ be such that, for every *d* large enough,

$$\mathbb{E}[\langle Z_d, \phi_U \rangle] - d^{\frac{r}{2}} \varepsilon > 0.$$

Equidistribution in probability

$$\begin{split} \mathbb{P}\left(Z_d \cap U = \emptyset\right) &= \mathbb{P}\left(\langle Z_d \,, \phi_U \rangle = 0\right) \\ &\leq \mathbb{P}\left(\langle Z_d \,, \phi_U \rangle < \mathbb{E}[\langle Z_d \,, \phi_U \rangle] - d^{\frac{r}{2}}\varepsilon\right) \\ &\leq \mathbb{P}\left(\left|\langle Z_d \,, \phi_U \rangle - \mathbb{E}[\langle Z_d \,, \phi_U \rangle]\right| > d^{\frac{r}{2}}\varepsilon\right) \\ &\leq \frac{1}{d^r \varepsilon^2} \operatorname{Var}(\langle Z_d \,, \phi_U \rangle) \\ &= O\left(d^{-\frac{n}{2}}\right). \end{split}$$

Thomas Letendre

▲ □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 Lausanne - 27/10/16

20 / 33

Universality of the zero set

Theorem (Gayet–Welschinger, 2013)

Let $\Sigma \subset \mathbb{R}^n$ be a codimension r compact submanifold without boundary and R > 0.

Then, there exists $C_{\Sigma,R} \ge 0$ such that, for all d large enough, for all $x \in M$,

$$\mathbb{P}\left(Z_d \cap B\left(x, \frac{R}{\sqrt{d}}\right) \supset \Sigma' \text{ s.t. } \left(B\left(x, \frac{R}{\sqrt{d}}\right), \Sigma'\right) \simeq (\mathbb{R}^n, \Sigma)\right) \geqslant C_{\Sigma, R}.$$

Moreover, $C_{\Sigma,R} > 0$ for R large enough.

The correlation function

A Kostlan polynomial $P \in \mathbb{R}^{\text{hom}}_d[X_0, \dots, X_n]$ defines a centered Gaussian process $(P(x))_{x \in \mathbb{S}^n}$.

This process is characterized by its correlation function:

 $e_d:(x,y)\mapsto \mathbb{E}[P(x)P(y)].$

The correlation function

A Kostlan polynomial $P \in \mathbb{R}^{hom}_d[X_0, \dots, X_n]$ defines a centered Gaussian process $(P(x))_{x \in \mathbb{S}^n}$.

This process is characterized by its correlation function:

$$e_d:(x,y)\mapsto \mathbb{E}[P(x)P(y)].$$

$$\mathbb{E}[P(x)P(y)] = \frac{(d+n)!}{\pi^n d!} \sum_{|\alpha|=d} {d \choose \alpha} x^{\alpha} y^{\alpha} = \frac{(d+n)!}{\pi^n d!} \left(\langle x, y \rangle \right)^d$$
$$= \frac{(d+n)!}{\pi^n d!} \cos\left(D(x,y)\right)^d.$$

The correlation function

A Kostlan polynomial $P \in \mathbb{R}^{\text{hom}}_d[X_0, \dots, X_n]$ defines a centered Gaussian process $(P(x))_{x \in \mathbb{S}^n}$.

This process is characterized by its correlation function:

$$e_d:(x,y)\mapsto \mathbb{E}[P(x)P(y)].$$

$$\mathbb{E}[P(x)P(y)] = \frac{(d+n)!}{\pi^n d!} \sum_{|\alpha|=d} {d \choose \alpha} x^{\alpha} y^{\alpha} = \frac{(d+n)!}{\pi^n d!} \left(\langle x, y \rangle \right)^d$$
$$= \frac{(d+n)!}{\pi^n d!} \cos\left(D(x,y)\right)^d.$$

Remark

By taking partial differentials,
$$rac{\partial e_d}{\partial x_i}(x,y) = \mathbb{E}\Big[rac{\partial P}{\partial x_i}(x)P(y)\Big].$$

Thomas Letendre

Volume of random submanifolds

Lausanne – 27/10/16

Scaling limit of the Bergman kernel

In the general real algebraic framework, the correlation function e_d is the Bergman kernel of $\mathcal{E}\otimes \mathcal{L}^d$.

There is a universal scaling limit for e_d (Ma–Marinescu, 2007) :

$$e_d(x,y) \simeq \frac{d^n}{\pi^n} \exp\left(-\frac{d}{2} \|x-y\|^2\right),$$

whenever $D(x, y) \leq K \frac{\log d}{\sqrt{d}}$.

Theorem (Ma-Marinescu, 2015)

There exists C > 0 such that, for all $k \in \mathbb{N}$,

$$\|e_d(x,y)\|_{\mathcal{C}^k} = O\left(d^{n+\frac{k}{2}}\exp\left(-C\sqrt{d}D(x,y)\right)\right),$$

uniformly in (x, y).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A heuristic for the mean volume

The Bergman kernel shows a characteristic scale $\frac{1}{\sqrt{d}}$.

We cut *M* into boxes of size $\frac{1}{\sqrt{d}}$: $\simeq \operatorname{Vol}(M) d^{\frac{n}{2}}$ boxes.

The boxes are independent, same distribution of Z_d in each box.

▲椰子 ★ 田子 ★ 田子 二 田

A heuristic for the mean volume

The Bergman kernel shows a characteristic scale $\frac{1}{\sqrt{d}}$.

We cut M into boxes of size $\frac{1}{\sqrt{d}}$: $\simeq \operatorname{Vol}(M) d^{\frac{n}{2}}$ boxes.

The boxes are independent, same distribution of Z_d in each box.

Components of size $\frac{1}{\sqrt{d}}$, each one has a volume of order $\left(\frac{1}{\sqrt{d}}\right)^{n-r}$. Finally, Vol (Z_d) is of order Vol (M) $d^{\frac{r}{2}}$.

Kac-Rice formula

In the case of hypersurfaces (r = 1). $P \in \mathbb{R}_d^{\text{hom}}[X_0, \dots, X_n]$ Kostlan-distributed, $Z_d = P^{-1}(0) \cap \mathbb{S}^n$.

Kac-Rice formula
For every
$$\phi$$
,
$$\mathbb{E}\left[\int_{Z_d} \phi |\mathsf{d}V_d|\right] = \frac{1}{\sqrt{2\pi}} \int_{x \in \mathbb{S}^n} \phi(x) \frac{\mathbb{E}\left[\|d_x P\| \, \left| \, P(x) = 0 \right]}{\sqrt{e_d(x, x)}}.$$

 $x \mapsto e_d(x, x)$ does not vanish (i.e. for all $x \in M$, P(x) is non-degenerate). Similar formula in the general case.

Asymptotic of the expectation

$$\mathbb{E}[\langle Z_d, \phi \rangle] = \frac{1}{\sqrt{2\pi}} \int_{x \in \mathbb{S}^n} \phi(x) \frac{\mathbb{E}\left[\|d_x P\| \mid P(x) = 0 \right]}{\sqrt{e_d(x, x)}}.$$

We have $e_d(x,x) \sim \frac{d^n}{\pi^n}$. We need to estimate $\mathbb{E}\left[\|d_x P\| \mid P(x) = 0 \right]$.

Asymptotic of the expectation

$$\mathbb{E}[\langle Z_d, \phi \rangle] = \frac{1}{\sqrt{2\pi}} \int_{x \in \mathbb{S}^n} \phi(x) \frac{\mathbb{E}\Big[\|d_x P\| \, \Big| \, P(x) = 0 \Big]}{\sqrt{e_d(x, x)}}.$$

We have $e_d(x, x) \sim \frac{d^n}{\pi^n}$. We need to estimate $\mathbb{E}\left[\|d_x P\| \mid P(x) = 0 \right]$. ($P(x), d_x P$) is a centered Gaussian of variance:

$$\Lambda = \begin{pmatrix} e_d(x,x) & \partial_{y_1} e_d(x,x) & \cdots & \partial_{y_n} e_d(x,x) \\ \partial_{x_1} e_d(x,x) & \partial_{x_1} \partial_{y_1} e_d(x,x) & \cdots & \partial_{x_1} \partial_{y_n} e_d(x,x) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_n} e_d(x,x) & \partial_{x_n} \partial_{y_1} e_d(x,x) & \cdots & \partial_{x_n} \partial_{y_n} e_d(x,x) \end{pmatrix}$$

The conditional distribution of $d_x P$ is a centered Gaussian. We can compute its variance from Λ .

Asymptotic of the expectation

$$\mathbb{E}[\langle Z_d, \phi \rangle] = \frac{1}{\sqrt{2\pi}} \int_{x \in \mathbb{S}^n} \phi(x) \frac{\mathbb{E}\Big[\|d_x P\| \, \Big| \, P(x) = 0 \Big]}{\sqrt{e_d(x, x)}}.$$

We have $e_d(x, x) \sim \frac{d^n}{\pi^n}$. We need to estimate $\mathbb{E}\left[\|d_x P\| \mid P(x) = 0 \right]$. ($P(x), d_x P$) is a centered Gaussian of variance:

$$\Lambda = \begin{pmatrix} e_d(x,x) & \partial_{y_1} e_d(x,x) & \cdots & \partial_{y_n} e_d(x,x) \\ \partial_{x_1} e_d(x,x) & \partial_{x_1} \partial_{y_1} e_d(x,x) & \cdots & \partial_{x_1} \partial_{y_n} e_d(x,x) \\ \vdots & \vdots & \ddots & \vdots \\ \partial_{x_n} e_d(x,x) & \partial_{x_n} \partial_{y_1} e_d(x,x) & \cdots & \partial_{x_n} \partial_{y_n} e_d(x,x) \end{pmatrix}$$

The conditional distribution of $d_x P$ is a centered Gaussian. We can compute its variance from Λ .

We conclude by using the estimates of Ma and Marinescu for e_d .

Asymptotic of the variance

$$\mathsf{Var}(\langle Z_d,\phi
angle) = \mathbb{E}\Big[\langle Z_d,\phi
angle^2\Big] - \mathbb{E}[\langle Z_d,\phi
angle]^2$$

By the Kac–Rice formula, $\mathbb{E}[\langle Z_d, \phi \rangle]^2$ equals:

$$\frac{1}{2\pi} \int_{x,y \in \mathbb{S}^n} \phi(x) \phi(y) \frac{\mathbb{E}\left[\|d_x P\| \left| P(x) = 0 \right]}{\sqrt{e_d(x,x)}} \frac{\mathbb{E}\left[\|d_y P\| \left| P(y) = 0 \right]}{\sqrt{e_d(y,y)}}.$$

▲□▶ 《母▶ 《書▶ 《書▶ 書 Lausanne - 27/10/16

Asymptotic of the variance

$$\mathsf{Var}(\langle Z_d,\phi
angle) = \mathbb{E}\Big[\langle Z_d,\phi
angle^2\Big] - \mathbb{E}[\langle Z_d,\phi
angle]^2$$

By the Kac–Rice formula, $\mathbb{E}[\langle Z_d, \phi \rangle]^2$ equals:

$$\frac{1}{2\pi} \int_{x,y \in \mathbb{S}^n} \phi(x)\phi(y) \frac{\mathbb{E}\left[\|d_x P\| \left| P(x) = 0 \right]}{\sqrt{e_d(x,x)}} \frac{\mathbb{E}\left[\|d_y P\| \left| P(y) = 0 \right]}{\sqrt{e_d(y,y)}}.$$

Besides,

$$\mathbb{E}\left[\left\langle Z_{d},\phi\right\rangle^{2}\right]=\mathbb{E}\left[\int_{x,y\in Z_{d}}\phi(x)\phi(y)\left|\mathsf{d}V_{d}\right|^{2}\right].$$

Lausanne – 27/10/16

→ ◎ → → ○ → → ○ 三臣

Kac-Rice formula 2

For *d* large enough, we have det $\begin{pmatrix} e_d(x,x) & e_d(x,y) \\ e_d(y,x) & e_d(y,y) \end{pmatrix} \neq 0$, whenever $x \neq y$ (i.e. (P(x), P(y)) is non-degenerate).

Kac-Rice formula

$$\mathbb{E}\left[\int_{x,y\in Z_d} \phi(x)\phi(y) |\mathsf{d}V_d|^2\right] = \frac{1}{2\pi} \int_{x,y\in\mathbb{S}^n} \phi(x)\phi(y) \frac{\mathbb{E}\left[\|d_xP\| \|d_yP\| \left| P(x) = 0 = P(y)\right]}{\sqrt{e_d(x,x)e_d(y,y) - e_d(x,y)^2}}.$$

Lausanne - 27/10/16

28 / 33

э

Asymptotic of the variance

Finally

$$\operatorname{Var}(\langle Z_d, \phi \rangle) = rac{1}{2\pi} \int_{x,y \in \mathbb{S}^n} \phi(x) \phi(y) \mathcal{D}_d(x,y),$$

where

$$\mathcal{D}_{d}(x,y) = \frac{\mathbb{E}\left[\|d_{x}P\| \|d_{y}P\| | P(x) = 0 = P(y) \right]}{\sqrt{e_{d}(x,x)e_{d}(y,y) - e_{d}(x,y)^{2}}} - \frac{\mathbb{E}\left[\|d_{x}P\| | P(x) = 0 \right]}{\sqrt{e_{d}(x,x)}} \frac{\mathbb{E}\left[\|d_{y}P\| | P(y) = 0 \right]}{\sqrt{e_{d}(y,y)}}.$$

▲ □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
 Lausanne - 27/10/16

29 / 33

Asymptotic of the variance

When
$$D(x, y) \ge K \frac{\log d}{\sqrt{d}}$$
, we prove that $\mathcal{D}_d(x, y)$ is $O\left(d^{r-\frac{n}{2}-1}\right)$.
Moreover, $\frac{1}{d^r} \mathcal{D}_d\left(x, x + \frac{z}{\sqrt{d}}\right) \xrightarrow[d \to +\infty]{} \mathcal{D}(z)$.

$$\begin{split} \int_{x,y\in\mathbb{S}^n} \phi(x)\phi(y)\mathcal{D}_d(x,y) &\simeq \int_{x\in\mathbb{S}^n} \int_{y\in B(x,\frac{\log d}{\sqrt{d}})} \phi(x)\phi(y)\mathcal{D}_d(x,y) \\ &\simeq d^{-\frac{n}{2}} \int_{x\in\mathbb{S}^n} \int_{z\in B(0,\log d)} \phi(x)\phi\left(x+\frac{z}{\sqrt{d}}\right)\mathcal{D}_d\left(x,x+\frac{z}{\sqrt{d}}\right) \\ &\simeq d^{r-\frac{n}{2}} \left(\int_{x\in\mathbb{S}^n} \phi(x)^2\right) \left(\int_{\mathbb{R}^n} \mathcal{D}(z)\right). \end{split}$$

Thomas Letendre

Volume of random submanifolds

▲ □ ▶ ▲ 🗗 ▶ ▲ 🖹 ▶ ▲ 🖹 ▶ Lausanne – 27/10/16

30 / 33

Almost sure equidistribution

We consider a random sequence of polynomials of increasing degree

$$(P_d)_{d\in\mathbb{N}^*}\in\prod_{d\in\mathbb{N}^*}\mathbb{R}_d^{\mathsf{hom}}[X_0,\ldots,X_n],$$

distributed as $d\nu$, product measure of the Kostlan distributions.

Corollary

If $n \ge 3$, then $d\nu$ -almost surely we have:

$$\forall \phi \in \mathcal{C}^{0}(\mathbb{S}^{n}), \qquad \frac{1}{\sqrt{d}} \left\langle Z_{\mathcal{P}_{d}}, \phi \right\rangle \xrightarrow[d \to +\infty]{} \frac{\operatorname{Vol}\left(\mathbb{S}^{n}\right)}{\operatorname{Vol}\left(\mathbb{S}^{n}\right)} \int_{\mathbb{S}^{n}} \phi.$$

Almost sure equidistribution

Let $\phi \in \mathcal{C}^0(\mathbb{S}^n)$, we have:

$$\mathbb{E}\left[\sum_{d\geq 1}\left(\frac{1}{\sqrt{d}}\left(\langle Z_{P_d},\phi\rangle-\mathbb{E}[\langle Z_d,\phi\rangle]\right)\right)^2\right]=\sum_{d\geq 1}\frac{1}{d}\operatorname{Var}(\langle Z_d,\phi\rangle)<+\infty,$$

since $Var(\langle Z_d, \phi \rangle) = O(d^{1-\frac{3}{2}})$. Then $d\nu$ -a.s.

$$\sum_{d\geq 1} \left(\frac{1}{\sqrt{d}} \left(\langle Z_{P_d}, \phi \rangle - \mathbb{E}[\langle Z_d, \phi \rangle] \right) \right)^2 < +\infty,$$

and

$$\frac{1}{\sqrt{d}}\left\langle Z_{P_{d}}\,,\phi\right\rangle\xrightarrow[d\to+\infty]{d\nu-\mathrm{p.s.}}\frac{\mathrm{Vol}\left(\mathbb{S}^{n-1}\right)}{\mathrm{Vol}\left(\mathbb{S}^{n}\right)}\int_{\mathbb{S}^{n}}\phi.$$

We conclude by using the separability of $\mathcal{C}^0(\mathbb{S}^n)$.

The end

Thank you for your attention.