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Random geometry

(M, g) compact Riemannian manifold of dimension n (without boundary).
We choose a codimension r submanifold of M “randomly”.

Question
What can we say of the topology or the geometry of the submanifold?
(volume, Euler characteristic, number of connected components, . . . )

We look for a statistical answer (mean, variance, distribution, . . . ) or an
almost sure behavior.
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Roots of real polynomials

A complex polynomial of degree d has d roots in C, generically distinct.

Question
How many roots does a real polynomial P ∈ Rd [X ] have?

Theorem (Kac, 1943)

Let P =
d∑

i=0

aiX
i , where a0, . . . , ad are i.i.d. standard Gaussian variables

and let Zd = P−1(0), then

E[card (Zd)] ∼ 2
π
log(d).
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Higher dimensions

Notations
Let α = (α0, . . . , αn) ∈ Nn+1, we set:

|α| = α0 + · · ·+ αn,

Xα = Xα0
0 · · ·Xαn

n ,

α! = α0! · · ·αn!,

if |α| = d ,
(
d

α

)
=

d!

α!
.

P homogeneous polynomial in
Rhom
d [X0, . . . ,Xn]: P =

∑
|α|=d

aαX
α.

P−1(0) ⊂ Rn+1 is a cone.
We consider ZP = P−1(0) ∩ Sn.
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What is a manifold?

Definition
A dimension n manifold is a space M which is locally diffeomorphic to Rn.

It generalizes the idea of a non-singular curve or surface (no double points,
no cusps, etc.).

Source: en.wikipedia.org

Main point
We can extend the calculus to maps between manifolds.
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What is a submanifold?

Let M be a manifold of dimension n and r ∈ {1, . . . , n}.

Definition
A codimension r submanifold of M is Zf ⊂ M such that Zf = f −1(0),
where:

f : M → Rr is smooth,
for all x such that f (x) = 0, dx f is surjective.

Main point
Zf is a manifold of dimension n − r .
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A random curve on the sphere

Picture by Alex Barnett (Dartmouth).
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Riemannian manifold

Definition
A Riemannian manifold is a manifold M equipped with a Riemannian
metric g (a scalar product on each tangent space).

On a Riemannian manifold (M, g), there are:
a natural distance D,
a natural volume measure |dVM |.

If Zf is a codimension r submanifold of M, the restriction of g is a
Riemannian metric on Zf .
We denote by |dVf | the associated ((n − r)-dimensional) volume measure.
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Gaussian variables

(V , 〈· , ·〉) Euclidean space of dimension N,
Λ self-adjoint and positive definite.

Definition
A random vector X in V is a centered Gaussian of variance Λ if its
distribution admits the density:

1

(2π)
N
2
√

det(Λ)
exp
(
−1
2
〈
Λ−1x , x

〉)
with respect to the Lebesgue measure. This is denoted by X ∼ N (Λ).

We say that X ∼ N (Id) is a standard Gaussian.
In any orthonormal basis (e1, . . . , eN) we have X =

∑
aiei , where

ai ∼ N (1) are i.i.d. real random variables.
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Some properties of Gaussian variables

Two jointly Gaussian vectors are independent iff they are uncorrelated.

If X ∼ N (Λ) in V and L : V → V ′ is linear, then L(X ) ∼ N (LΛL∗).

If (X ,Y ) is a centered Gaussian vector with variance
(
A Bt

B C

)
, then the

distribution of Y given that X = 0 is also a centered Gaussian vector,
and its variance is:

C − BA−1Bt.
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Kostlan–Shub–Smale polynomials
We consider a random Kostlan-distributed P ∈ Rhom

d [X0, . . . ,Xn]. That is:

P =

√
(d + n)!

πnd!

∑
|α|=d

aα

√(
d

α

)
Xα,

where (aα)|α|=d are i.i.d. N (1) real variables.

Remark
P ∼ N (Id) in Rhom

d [X0, . . . ,Xn] for the following L2 scalar product:

〈P ,Q〉 =
1
2π

∫
{z∈Cn+1|‖z‖=1}

P(z)Q(z) dθ(z).

Kostlan’s distribution is invariant under the action of On+1(R) by:

(O · P)(x) = P(O−1x).
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Kostlan–Shub–Smale polynomials

Let d , n ∈ N∗ and r ∈ {1, . . . , n},
P1, . . . ,Pr i.i.d. Kostlan-distributed polynomials in Rhom

d [X0, . . . ,Xn].
We set Zd = ZP1 ∩ · · · ∩ ZPr ⊂ Sn.

Lemma
Zd is almost surely a codimension r submanifold of Sn.

Theorem (Kostlan, 1993)

For all n, r and d , we have: E[Vol (Zd)] = d
r
2 Vol (Sn−r ).
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Kostlan–Shub–Smale polynomials

Figure: Degree 56 random curves in S2, Kostlan’s model.

Pictures by Maria Nastasescu (Caltech).
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Real algebraic framework

M real algebraic manifold of dimension n (for example M = ZP ⊂ Sn+1),
with a natural Riemannian metric.

(P1, . . . ,Pr ) replaced by a standard Gaussian section s of E ⊗ Ld , a rank r
real holomorphic Hermitian vector bundle, with L ample line bundle.
In this setting, Zd = s−1

d (0).

Lemma
If d is large enough, then Zd is a.s. a codimension r submanifold of M.

Thomas Letendre Volume of random submanifolds Lausanne – 27/10/16 14 / 33



Real algebraic framework

M real algebraic manifold of dimension n (for example M = ZP ⊂ Sn+1),
with a natural Riemannian metric.

(P1, . . . ,Pr ) replaced by a standard Gaussian section s of E ⊗ Ld , a rank r
real holomorphic Hermitian vector bundle, with L ample line bundle.
In this setting, Zd = s−1

d (0).

Lemma
If d is large enough, then Zd is a.s. a codimension r submanifold of M.

Thomas Letendre Volume of random submanifolds Lausanne – 27/10/16 14 / 33



Expected volume

|dVM | Riemannian measure on M, |dVd | Riemannian measure on Zd .

We see Zd as a measure on M: ∀φ ∈ C0(M), 〈Zd , φ〉 =

∫
Zd

φ |dVd |.

Theorem (L., 2014)

For all φ ∈ C0(M),

E[〈Zd , φ〉] = d
r
2

(∫
M
φ |dVM |

)
Vol (Sn−r )

Vol (Sn)
+ ‖φ‖C0 O

(
d

r
2−1
)
,

where the error term is independent of φ.

Corollary

As Radon measures, we have: d−
r
2E[Zd ] −−−−−→

d→+∞

Vol (Sn−r )

Vol (Sn)
|dVM |.
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Variance of the volume

Theorem (L., 2016)

If 1 6 r < n, then for all φ ∈ C0(M),

Var(〈Zd , φ〉) = d r− n
2

(∫
M
φ2 |dVM |

)
In,r + o

(
d r− n

2

)
,

where In,r is explicit and 0 6 In,r < +∞.

Corollary

Var(Vol (Zd)) = d r− n
2 Vol (M) In,r + o

(
d r− n

2

)
.
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The case of random points

For one Kostlan–Shub–Smale polynomial in S1 (n = r = 1).

Theorem (Kostlan, 1993)

E[card(Zd)] = 2
√
d .

Theorem (Dalmao, 2015)

There exists σ2 > 0 explicit such that:

Var(card(Zd)) ∼ σ2
√
d .

Moreover,
card(Zd)− 2

√
d

σd
1
4

D−−−−−→
d→+∞

N (1).
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Concentration around the mean

Corollary
If 1 6 r < n, then for all φ ∈ C0(M),

P

(∣∣∣∣∣〈Zd , φ〉 − E[〈Zd , φ〉]
d

r
2

∣∣∣∣∣ > 1
d

r
4

)
= O

(
d

r−n
2

)
.

By Markov’s inequality,

P

(∣∣∣∣∣〈Zd , φ〉 − E[〈Zd , φ〉]
d

r
2

∣∣∣∣∣ > 1
d

r
4

)
= P

(∣∣∣〈Zd , φ〉 − E[〈Zd , φ〉]
∣∣∣ > d

r
4

)
6 d−

r
2 Var(〈Zd , φ〉)

= O
(
d

r−n
2

)
.
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Equidistribution in probability

Corollary
If 1 6 r < n, for every open set U ⊂ M, we have:

P (Zd ∩ U = ∅) = O
(
d−

n
2

)
.

Let φU ∈ C0(M) that vanishes outside U and is positive on U.

Let ε > 0 be such that, for every d large enough,

E[〈Zd , φU〉]− d
r
2 ε > 0.
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Equidistribution in probability

P (Zd ∩ U = ∅) = P (〈Zd , φU〉 = 0)

6 P
(
〈Zd , φU〉 < E[〈Zd , φU〉]− d

r
2 ε
)

6 P
(∣∣∣〈Zd , φU〉 − E[〈Zd , φU〉]

∣∣∣ > d
r
2 ε
)

6
1

d rε2
Var(〈Zd , φU〉)

= O
(
d−

n
2

)
.
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Universality of the zero set

Theorem (Gayet–Welschinger, 2013)
Let Σ ⊂ Rn be a codimension r compact submanifold without boundary
and R > 0.
Then, there exists CΣ,R > 0 such that, for all d large enough, for all x ∈ M,

P
(
Zd ∩ B

(
x ,

R√
d

)
⊃ Σ′ s.t.

(
B

(
x ,

R√
d

)
,Σ′
)
' (Rn,Σ)

)
> CΣ,R .

Moreover, CΣ,R > 0 for R large enough.
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The correlation function
A Kostlan polynomial P ∈ Rhom

d [X0, . . . ,Xn] defines a centered Gaussian
process (P(x))x∈Sn .

This process is characterized by its correlation function:

ed : (x , y) 7→ E[P(x)P(y)] .

E[P(x)P(y)] =
(d + n)!

πnd!

∑
|α|=d

(
d

α

)
xαyα =

(d + n)!

πnd!
(〈x , y〉)d

=
(d + n)!

πnd!
cos (D(x , y))d .

Remark

By taking partial differentials, ∂ed∂xi
(x , y) = E

[
∂P
∂xi

(x)P(y)
]
.
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Scaling limit of the Bergman kernel
In the general real algebraic framework, the correlation function ed is the
Bergman kernel of E ⊗ Ld .

There is a universal scaling limit for ed (Ma–Marinescu, 2007) :

ed(x , y) ' dn

πn
exp
(
−d

2
‖x − y‖2

)
,

whenever D(x , y) 6 K log d√
d
.

Theorem (Ma–Marinescu, 2015)
There exists C > 0 such that, for all k ∈ N,

‖ed(x , y)‖Ck = O
(
dn+ k

2 exp
(
−C
√
dD(x , y)

))
,

uniformly in (x , y).
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A heuristic for the mean volume

The Bergman kernel shows a characteristic scale 1√
d
.

We cut M into boxes of size 1√
d
:

' Vol (M) d
n
2 boxes.

The boxes are independent, same distribution of Zd in each box.

Components of size 1√
d
, each one has a volume of order

(
1√
d

)n−r
.

Finally, Vol (Zd) is of order Vol (M) d
r
2 .
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Kac–Rice formula

In the case of hypersurfaces (r = 1).
P ∈ Rhom

d [X0, . . . ,Xn] Kostlan-distributed, Zd = P−1(0) ∩ Sn.

Kac–Rice formula
For every φ,

E
[∫

Zd

φ |dVd |
]

=
1√
2π

∫
x∈Sn

φ(x)
E
[
‖dxP‖

∣∣∣P(x) = 0
]

√
ed(x , x)

.

x 7→ ed(x , x) does not vanish (i.e. for all x ∈ M, P(x) is non-degenerate).
Similar formula in the general case.
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Asymptotic of the expectation

E[〈Zd , φ〉] =
1√
2π

∫
x∈Sn

φ(x)
E
[
‖dxP‖

∣∣∣P(x) = 0
]

√
ed(x , x)

.

We have ed(x , x) ∼ dn

πn . We need to estimate E
[
‖dxP‖

∣∣∣P(x) = 0
]
.

(P(x), dxP) is a centered Gaussian of variance:

Λ =


ed(x , x) ∂y1ed(x , x) · · · ∂yned(x , x)
∂x1ed(x , x) ∂x1∂y1ed(x , x) · · · ∂x1∂yned(x , x)

...
...

. . .
...

∂xned(x , x) ∂xn∂y1ed(x , x) · · · ∂xn∂yned(x , x)

 .

The conditional distribution of dxP is a centered Gaussian.
We can compute its variance from Λ.
We conclude by using the estimates of Ma and Marinescu for ed .
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Asymptotic of the variance

Var(〈Zd , φ〉) = E
[
〈Zd , φ〉2

]
− E[〈Zd , φ〉]2 .

By the Kac–Rice formula, E[〈Zd , φ〉]2 equals:

1
2π

∫
x ,y∈Sn

φ(x)φ(y)
E
[
‖dxP‖

∣∣∣P(x) = 0
]

√
ed(x , x)

E
[
‖dyP‖

∣∣∣P(y) = 0
]

√
ed(y , y)

.

Besides,

E
[
〈Zd , φ〉2

]
= E

[∫
x ,y∈Zd

φ(x)φ(y) |dVd |2
]
.
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Asymptotic of the variance

Var(〈Zd , φ〉) = E
[
〈Zd , φ〉2

]
− E[〈Zd , φ〉]2 .

By the Kac–Rice formula, E[〈Zd , φ〉]2 equals:

1
2π

∫
x ,y∈Sn

φ(x)φ(y)
E
[
‖dxP‖

∣∣∣P(x) = 0
]

√
ed(x , x)

E
[
‖dyP‖

∣∣∣P(y) = 0
]

√
ed(y , y)

.

Besides,

E
[
〈Zd , φ〉2

]
= E

[∫
x ,y∈Zd

φ(x)φ(y) |dVd |2
]
.
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Kac–Rice formula 2

For d large enough, we have det
(

ed (x ,x) ed (x ,y)
ed (y ,x) ed (y ,y)

)
6= 0, whenever x 6= y

(i.e. (P(x),P(y)) is non-degenerate).

Kac–Rice formula

E
[∫

x ,y∈Zd

φ(x)φ(y) |dVd |2
]

=

1
2π

∫
x ,y∈Sn

φ(x)φ(y)
E
[
‖dxP‖ ‖dyP‖

∣∣∣P(x) = 0 = P(y)
]

√
ed(x , x)ed(y , y)− ed(x , y)2

.
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Asymptotic of the variance

Finally

Var(〈Zd , φ〉) =
1
2π

∫
x ,y∈Sn

φ(x)φ(y)Dd(x , y),

where

Dd(x , y) =
E
[
‖dxP‖ ‖dyP‖

∣∣∣P(x) = 0 = P(y)
]

√
ed(x , x)ed(y , y)− ed(x , y)2

−
E
[
‖dxP‖

∣∣∣P(x) = 0
]

√
ed(x , x)

E
[
‖dyP‖

∣∣∣P(y) = 0
]

√
ed(y , y)

.
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Asymptotic of the variance

When D(x , y) > K log d√
d
, we prove that Dd(x , y) is O

(
d r− n

2−1
)
.

Moreover, 1
d rDd

(
x , x + z√

d

)
−−−−−→
d→+∞

D(z).

∫
x ,y∈Sn

φ(x)φ(y)Dd(x , y) '
∫
x∈Sn

∫
y∈B(x , log d√

d
)
φ(x)φ(y)Dd(x , y)

' d−
n
2

∫
x∈Sn

∫
z∈B(0,log d)

φ(x)φ

(
x +

z√
d

)
Dd

(
x , x +

z√
d

)
' d r− n

2

(∫
x∈Sn

φ(x)2
)(∫

Rn

D(z)

)
.
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Almost sure equidistribution

We consider a random sequence of polynomials of increasing degree

(Pd)d∈N∗ ∈
∏
d∈N∗

Rhom
d [X0, . . . ,Xn],

distributed as dν, product measure of the Kostlan distributions.

Corollary
If n > 3, then dν-almost surely we have:

∀φ ∈ C0(Sn),
1√
d
〈ZPd

, φ〉 −−−−−→
d→+∞

Vol
(
Sn−1)

Vol (Sn)

∫
Sn
φ.
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Almost sure equidistribution

Let φ ∈ C0(Sn), we have:

E

∑
d>1

(
1√
d

(〈ZPd
, φ〉 − E[〈Zd , φ〉])

)2
 =

∑
d>1

1
d
Var(〈Zd , φ〉) < +∞,

since Var(〈Zd , φ〉) = O
(
d1− 3

2

)
. Then dν-a.s.

∑
d>1

(
1√
d

(〈ZPd
, φ〉 − E[〈Zd , φ〉])

)2

< +∞,

and
1√
d
〈ZPd

, φ〉 dν−p.s.−−−−−→
d→+∞

Vol
(
Sn−1)

Vol (Sn)

∫
Sn
φ.

We conclude by using the separability of C0(Sn).
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The end

Thank you for your attention.
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