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Random geometry

(M, g) compact Riemannian manifold of dimension n (without boundary).
We choose a codimension r submanifold of M “randomly”.

Question
What can we say of the topology or the geometry of the submanifold?
(volume, Euler characteristic, number of connected components, ... )

We look for a statistical answer (mean, variance, distribution, ...) or an
almost sure behavior.
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Roots of real polynomials

A complex polynomial of degree d has d roots in C, generically distinct.

Question

How many roots does a real polynomial P € Ry4[X] have? J
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Roots of real polynomials

A complex polynomial of degree d has d roots in C, generically distinct.

Question

How many roots does a real polynomial P € Ry4[X] have?

Theorem (Kac, 1943)
d

Let P = Z aiX' where ag, ..., aq are i.i.d. standard Gaussian variables
i=0
and let Zy = P~1(0), then

E[card (Z4)] ~ %Iog(d).
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Higher dimensions

Notations

Let a = (ag,...,an) € N1 we set:
° |la|=ag+ -+ ap,

o X% = X§0. .. Xom,

P homogeneous polynomial in
REP™[X0, .., Xal: P = aaX®.
|a|=d

P~1(0) c R is a cone.
We consider Zp = P~1(0) N'S".
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What is a manifold?
Definition

A dimension n manifold is a space M which is locally diffeomorphic to R".

o & - = DA
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What is a manifold?

Definition J

A dimension n manifold is a space M which is locally diffeomorphic to R”".

It generalizes the idea of a non-singular curve or surface (no double points,
no cusps, etc.).

P ~
¥ W

Source: en.wikipedia.org

S

We can extend the calculus to maps between manifolds.

Main point J
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What is a submanifold?

Let M be a manifold of dimension nand r € {1,..., n}.

Definition
A codimension r submanifold of M is Zr C M such that Z; = f~1(0),
where:

o f: M — R" is smooth,

o for all x such that f(x) = 0, dxf is surjective.
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What is a submanifold?

Let M be a manifold of dimension nand r € {1,..., n}.

Definition
A codimension r submanifold of M is Zs C M such that Zr = f~1(0),
where:

e f: M — R" is smooth,

o for all x such that f(x) = 0, dxf is surjective.

Zr is a manifold of dimension n — r.

Main point J
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A random curve on the sphere

Picture by Alex Barnett (Dartmouth).
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Riemannian manifold

Definition

A Riemannian manifold is a manifold M equipped with a Riemannian
metric g (a scalar product on each tangent space).
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Riemannian manifold

Definition
A Riemannian manifold is a manifold M equipped with a Riemannian
metric g (a scalar product on each tangent space).

On a Riemannian manifold (M, g), there are:
@ a natural distance D,

@ a natural volume measure |dVyy|.
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Riemannian manifold

Definition
A Riemannian manifold is a manifold M equipped with a Riemannian
metric g (a scalar product on each tangent space).

On a Riemannian manifold (M, g), there are:
@ a natural distance D,

@ a natural volume measure |dVyy|.

If Z¢ is a codimension r submanifold of M, the restriction of g is a
Riemannian metric on Z¢.
We denote by |dV¢| the associated ((n — r)-dimensional) volume measure.
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Gaussian variables

(V,(-,+)) Euclidean space of dimension N,
A self-adjoint and positive definite.

Definition
A random vector X in V is a centered Gaussian of variance A if its
distribution admits the density:

m exp (—% </\—1x,x>)

with respect to the Lebesgue measure. This is denoted by X ~ N(A).

We say that X ~ N(Id) is a standard Gaussian.
In any orthonormal basis (e1, ..., ey) we have X = > a;e;, where
aj ~ N (1) are i.i.d. real random variables.
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Some properties of Gaussian variables

@ Two jointly Gaussian vectors are independent iff they are uncorrelated.

o If X ~N(A)in Vand L:V — V'is linear, then L(X) ~ N(LAL*).

e If (X,Y) is a centered Gaussian vector with variance (A & ), then the

distribution of Y given that X = 0 is also a centered Gaussian vector,
and its variance is:

C — BA 1Bt
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Kostlan—Shub—Smale polynomials
We consider a random Kostlan-distributed P € RI°™[Xo, ..., X,]. That is:

Py ()

|a|=d

where (a,)|q|=q are i.i.d. N(1) real variables.
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Kostlan—Shub—Smale polynomials

We consider a random Kostlan-distributed P € RI°™[Xo, ..., X,]. That is:

SCEAE

|lal=d

where (a,)|q|=q are i.i.d. N(1) real variables.
Remark
P ~ N (Id) in RI°™[Xy, ..., X,] for the following L? scalar product:

1
(P.Q) = o /{ gy POAE ()

Kostlan's distribution is invariant under the action of Op41(R) by:

(0 - P)(x) = P(O™*x).
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Kostlan—Shub—Smale polynomials

Let d,n e N*and r € {1,...,n},
Pi,..., P, iid. Kostlan-distributed polynomials in RT”‘[XO, ooy Xnl
We set Zd:Zplﬁ-'-ﬂZpr c s".

Lemma J

Zy is almost surely a codimension r submanifold of S".

Theorem (Kostlan, 1993)
For all n,r and d, we have: E[Vol (Z4)] = dz Vol (S"1). J
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Kostlan—Shub—Smale polynomials

Figure: Degree 56 random curves in S?, Kostlan's model.

Pictures by Maria Nastasescu (Caltech).
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Real algebraic framework

M real algebraic manifold of dimension n (for example M = Zp C S"*1),
with a natural Riemannian metric.

(Py,...,P,) replaced by a standard Gaussian section s of £ ® £, a rank r
real holomorphic Hermitian vector bundle, with £ ample line bundle.
In this setting, Zy = s, *(0).
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Real algebraic framework

M real algebraic manifold of dimension n (for example M = Zp C S"*1),
with a natural Riemannian metric.

(Py,...,P,) replaced by a standard Gaussian section s of £ ® £, a rank r
real holomorphic Hermitian vector bundle, with £ ample line bundle.
In this setting, Zy = s, *(0).

Lemma

If d is large enough, then Z4 is a.s. a codimension r submanifold of M. J
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Expected volume

|dVi| Riemannian measure on M, |dVy4| Riemannian measure on Zy.

We see Z, as a measure on M: V¢ € CO(M),(Zy,¢) = / ¢ |dVyl.
Z4

Theorem (L., 2014)
For all ¢ € C°(M),

(2,0 = 8% ([ olavinl) T + 6lleo 0(a57).

where the error term is independent of ¢.
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Expected volume

|dVi| Riemannian measure on M, |dVy4| Riemannian measure on Zy.

We see Zy as a measure on M: V¢ € CO(M),(Zy, ¢) :/ ¢ |dVyl.
Zy

Theorem (L., 2014)
For all ¢ € C°(M),

B(Zs, ) = 0% ( | 014l ) <Gy + Iolo O(4577).

where the error term is independent of ¢.

Corollary
Vol (S"=)

As Radon measures, we have: d~2E[Z4] d+ Vol (S7)
—+00

|dVml.
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Variance of the volume

Theorem (L., 2016)
If1 < r < n, then for all $ € CO(M),

Var((Za,8) =% ([ 2 1dVul) Zo, + oa2)

where Z,, , is explicit and 0 < Z,, , < +o0.
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Variance of the volume

Theorem (L., 2016)
If1 < r < n, then for all $ € CO(M),

Var((Za,8) =% ([ 2 1dVul) Zo, + oa2)

where Z,, , is explicit and 0 < Z,, , < +o0.

Corollary

Var(Vol (Z4)) = d"~3 Vol (M) Z,,., + o<df—%> .
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The case of random points

For one Kostlan—Shub-Smale polynomial in S (n = r = 1).
Theorem (Kostlan, 1993)
E[card(Z4)] = 2Vd.

Theorem (Dalmao, 2015)

There exists 0> > 0 explicit such that:
Var(card(Zy)) ~ 0?Vd.

Moreover,
card(Zg) —2vd »p

O'd% d——+oo

s N(1).
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Concentration around the mean

Corollary
If1 < r < n, then for all ¢ € CO(M),

‘|

(Zd,9) —E[(Z4,9)]|
dz

By Markov's inequality,

'

(Za,8) —E[{Za, )]
dz

>d1):P(

B~

/

r—

- ofa)
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Equidistribution in probability

Corollary

If 1 < r < n, for every open set U C M, we have

P(ZyNU=0) = o(d-%)

o & - = DA
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Equidistribution in probability

Corollary
If 1 < r < n, for every open set U C M, we have:

P(ZyN U =0) = o(d*%) .

Let ¢y € C°(M) that vanishes outside U and is positive on U.

Let € > 0 be such that, for every d large enough,

E[(Zg,¢u)] — dze > 0.
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Equidistribution in probability

P(ZgnU=0)=P((Z4,¢u)=0)
P(<Zda¢U <E[(Z4, ¢U>]—d25)
<P(‘Zd,¢u E[Zd,¢u]‘>d2€>
1

5 Var((Zq, 9u))

o)
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Universality of the zero set

Theorem (Gayet—Welschinger, 2013)

Let ¥ C R" be a codimension r compact submanifold without boundary
and R > 0.

Then, there exists Cx g > 0 such that, for all d large enough, for all x € M,

P (zd nB (x, %) S5 Y st. (B (x, %) ,z’) ~ (R",Z)) > G

Moreover, Cs gr > 0 for R large enough.
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The correlation function

A Kostlan polynomial P € Rt}om[Xo, ..., Xp] defines a centered Gaussian
process (P(x))xesn.

This process is characterized by its correlation function:

ed : (x,y) = E[P(x)P(y)]
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The correlation function

A Kostlan polynomial P € Rgom[Xo, ..., Xp] defines a centered Gaussian
process (P(x))xesn-

This process is characterized by its correlation function:

ed : (x,y) = E[P(x)P(y)]

BlPPK = S (D)t = ey

|a|=d
(d+n)

- W!!COS(D(X,y))d.
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The correlation function

A Kostlan polynomial P € Rgom[Xo, ..., Xp] defines a centered Gaussian
process (P(x))xesn-

This process is characterized by its correlation function:

ed : (x,y) = E[P(x)P(y)]

BlPPK = S (D)t = ey

|a|=d
d + n)!
= %COS(D(XJ))CI-
Remark
By taking partial differentials, ‘g—i"_’(x,y) =E [g—Z(X)P(y)].
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Scaling limit of the Bergman kernel

In the general real algebraic framework, the correlation function ey is the
Bergman kernel of £ ® £9.

There is a universal scaling limit for e4 (Ma—Marinescu, 2007) :

d” d
estxy) = e (=5 - y1?).

log d
whenever D(x,y) < K e

Theorem (Ma—Marinescu, 2015)
There exists C > 0 such that, for all k € N,

lea(x,)llex = O(d™ % exp (~CVdD(x,y)) )

uniformly in (x, y).
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A heuristic for the mean volume

The Bergman kernel shows a characteristic scale \/Lg.
We cut M into boxes of size 77

~ Vol (M) d2 boxes.

The boxes are independent, same distribution of Z; in each box.
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A heuristic for the mean volume

The Bergman kernel shows a characteristic scale \/ig.
We cut M into boxes of size 77

~ Vol (M) d2 boxes.

The boxes are independent, same distribution of Z; in each box.

n—r
Components of size \/ig, each one has a volume of order <i> )

Vd
Finally, Vol (Z4) is of order Vol (M) dz.
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Kac—Rice formula

In the case of hypersurfaces (r = 1).

P € RIP™([Xo, ..., X,] Kostlan-distributed, Zy = P~1(0) N S".

Kac—Rice formula
For every ¢,

E[ldPl | P(x) =]

eq(x, x)

x > e4(x, x) does not vanish (i.e. for all x € M, P(x) is non-degenerate).
Similar formula in the general case.
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Asymptotic of the expectation

E[(Zq,9)] = \/%_ﬂ /XESH ‘b(x)E[“dXP!d’(i(i; _ 0}

We have ey(x, x) ~ 7. We need to estimate IE[HdXPH ’P(x) = 0}.
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Asymptotic of the expectation

g S

We have ey(x, x) ~ <5, We need to estimate E[dePH ’P(x) = 0}.

(P(x), dxP) is a centered Gaussian of variance:

eq(x, x) Opeq(x,x) -+ Oy,eq(x,x)
A O €d(X,Xx) 0x 0y eq(x,x) -+ 0y 0y,eq(x,x)
Oxped(X,x)  0x,0y,€d(x,x) -+ 0Ox,0y,eq4(x,x)

The conditional distribution of dy P is a centered Gaussian.
We can compute its variance from A.
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Asymptotic of the expectation

g S

We have ey(x, x) ~ <5, We need to estimate E[dePH ’P(x) = 0}.

(P(x), dxP) is a centered Gaussian of variance:

eq(x, x) Opeq(x,x) -+ Oy,eq(x,x)
A O €d(X,Xx) 0x 0y eq(x,x) -+ 0y 0y,eq(x,x)
Oxped(X,x)  0x,0y,€d(x,x) -+ 0Ox,0y,eq4(x,x)

The conditional distribution of dy P is a centered Gaussian.
We can compute its variance from A.

We conclude by using the estimates of Ma and Marinescu for ey.
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Asymptotic of the variance

Var((Za,6)) = E[(Zy,0)| —E[(Zy, o).

By the Kac—Rice formula, E[(Zy, )] equals:

| E [ld:Pll | P(x) = 0] E[lld, Pl | P(y) = O]

2 /s Ay o) NOA))
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Asymptotic of the variance

Var((Za,6)) = E[(Zy,0)| —E[(Zy, o).

By the Kac—Rice formula, E[(Zy, )] equals:

| E [ld:Pll | P(x) = 0] E[lld, Pl | P(y) = O]

2 /s Ay o) NOA))

Besides,

E[(Zd,qb)ﬂ:E[/x

6()0(y) [d vﬂ |

7y€Zd
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Kac—Rice formula 2

For d large enough, we have det (:ZE; 3 :&yﬁ) # 0, whenever x # y

(i.e. (P(x), P(y)) is non-degenerate).

Kac—Rice formula

- [/X,yezd P(x)9(y)|d Vd|2] _

| S )E[ndxpn ldyPll| P(x) = 0= P(y)]
27 Jxyese Ved(x,x)ed(y,y) — eqa(x, y)?
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Thomas Letendre Volume of random submanifolds

Asymptotic of the variance

Finally
Var((Za¢)) = 5 [ 0x)o()Palx.),
X,y esSn
where
E [lldP] l1dy Pl | P(x) =0 = P(y)]
Dd(x’}/) =

Ved(x, x)eq(y,y) — ed(x, y)?

E[|dPll|P(x) = 0] E|lld,PI| | P(y) = 0]
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Asymptotic of the variance

When D(x,y) > K'8< we prove that Dy(x,y) is O(d~271).
Vvd

Moreover, 2Dy <x,x + \%) m) D(z).

/vaegn d(x)p(y)Dy(x,y) ~ /XESn /yeB(x,"’j;) B(x)d(y)Dy(x, y)

n V4 V4
~d 2 “_\p ’ <
/xGS" /ZEB(O,Iogd) ¢(X)¢ <X - \/3> I <X X \/H)

s ([ o) (o)
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Almost sure equidistribution

We consider a random sequence of polynomials of increasing degree

(Pa)aen+ € ] REF™[X0,- ., Xal,
den

distributed as dv, product measure of the Kostlan distributions.

Corollary

If n > 3, then dv-almost surely we have:

0rcn Vol (s"1)
V6 € C18, T<Z”d’¢> a0 Vol (57) Lo
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Almost sure equidistribution

Let ¢ € CO(S™), we have:

1 2 1
B {; (5 (20, ) - ELZs o) ] =3 g var(za o) < o

since Var((Zy, ¢)) = O(dk%). Then dv-as.

1 2
> (W ((Zp, &) — E[<Zd,¢>1)) < 400,

d>1

and

L o s YO

e {2y 0) > g (Sm)

We conclude by using the separability of CO(S™).

Thomas Letendre Volume of random submanifolds Lausanne — 27/10/16 32/33



The end

Thank you for your attention.
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